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RESEARCH

An important characteristic of crop yields is variation over 
space and time. Yields vary as crops respond to spatial and 

temporal heterogeneity of the environment, changes in manage-
ment, and interactions among these factors (Bakker et al., 2005; 
Kaspar et al., 2003; Wood et al., 2004). A rich agronomic litera-
ture addresses within-fi eld yield variability as it relates to yield 
potential (Lobell and Ortiz-Monasterio, 2006), precision agricul-
ture, and fi eld management zones for increasing yields ( Jaynes et 
al., 2003). At the regional scale, yield forecasting (Bannayan et 
al., 2007) focuses on estimation of absolute yields within a grow-
ing season by using process-based models and data on short-term 
changes in atmospheric and soil moisture conditions (Launay and 
Guérif, 2003; Stöckle et al., 2003). Yield stability, yet another 
focus of the yield variability literature (Mead et al., 1986; Tolle-
naar and Lee, 2002), includes measures of year-to-year constancy 
and relates to producers’ concept of dependability (Berzsenyi et 
al., 2000; Mead et al., 1986; Tokatlidis and Koutroubas, 2004).
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ABSTRACT

Regional-level recurring spatial patterns of yield 

variability are important for commercial activi-

ties, strategic agricultural planning, and pub-

lic policy, but little is known about the factors 

contributing to their formation. An important 

step to improve our understanding is recogniz-

ing regional spatial patterns of yield variability 

in association with regional environmental char-

acteristics. We examined the spatial distribution 

of county-level mean yields and CVs of mean 

yields of four functionally different crops—corn 

(Zea mays L.), soybean [Glycine max (L.) Merr.], 

alfalfa (Medicago sativa), and oat (Avena sativa 

L.)—in Iowa using Moran’s Index of spatial auto-

correlation. Patterns of association with 12 

county-level climatic, edaphic, and topographic 

environmental characteristics were examined 

using partial least squares regression. Two 

distinct geographic provinces of yield stability 

were identifi ed: one in the northern two-thirds 

of the state characterized by high mean yields 

and high yield constancy, and one in the south-

ern third of the state characterized by low mean 

yields and low yield constancy. Among eight 

partial least squares regression models, which 

explained 50 to 81% of variation of mean yields 

and yield CVs, mean organic matter and mean 

depth to seasonally high water table had great-

est relative importance to mean yields of grass 

crops and legume crops, respectively. Among 

the CV models, variables describing water avail-

ability were of greatest relative importance, with 

less distinct differences between grass and 

legume crops. Partial least squares regression 

is a potentially powerful tool for understanding 

regional yield variability.
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In addition to constancy, descriptions of recurrent 
spatial patterns of yield variability are a means to char-
acterize yield stability. Recognition of fi eld-level recur-
rent spatial patterns of yield variability is necessary for 
spatial management of fi elds by individual farmers ( Jaynes 
et al., 2003; Kaspar et al., 2003; Schepers et al., 2004). 
At regional levels, recurrent spatial patterns of yield vari-
ability are important to longer-term commercial interests 
( Jagtap and Jones, 2002), strategic agricultural planning, 
and public policy formulation and application (DeWit et 
al., 2005; Lobell and Ortiz-Monasterio, 2006; Wassenaar 
et al., 1999). However, at regional scales, little is known 
about the interactions of multiple cultivars, multiple crop-
ping systems, and environmental heterogeneity in pat-
tern formation. An important fi rst step to increasing this 
understanding is identifi cation of regional recurring spa-
tial patterns of yield variability in relation to environmen-
tal factors (Bates, 1995; Kravchenko et al., 2005).

Knowledge of deterministic relationships between 
yield variability and environmental heterogeneity beyond 
the scale of individual plants is limited (Day et al., 2003; 
Pausas et al., 2003). However, an expanding literature 
by ecologists, geographers, geologists, and climatologists 
addresses yield variability in association with environmen-
tal heterogeneity beyond the plant scale (Day et al., 2003; 
Hutchings and John, 2004; Si and Farrell, 2004; Waltman 
et al., 2004; Williams et al., 2008). From this literature, 
spatially explicit predictive (versus explanatory) modeling 
(e.g., Legendre et al., 2002; Lobell and Ortiz-Monasterio, 
2006; Miller et al., 2007; Popp et al., 2005; Williams et al., 
2008), and concepts of the association of diff erent potential 
limiting factors with diff erent spatial patterns of yield vari-
ability (Lobell and Ortiz-Monasterio, 2006) have emerged. 
Applied to regional scales, these approaches off er opportu-
nities for identifying longer-term spatial patterns of yield 
variability in association with environmental heterogeneity 
and thus, a vital fi rst step in developing hypotheses about 
causes of their formation (Begon et al., 1990).

Regression models are often used in analysis of veg-
etation–environment associations (Guisan and Zimmer-
man, 2000), but use of multiple environmental variables 
may be hampered by confounding and colinearity (Bak-
ker et al., 2005; Helland, 1988; Wigley and Qipu, 1983). 
Alternative modeling approaches (Abdi, 2003; Wilson, 
2007) can be used, however, to explore associations of 
regional-level yield variability with sets of environmen-
tal variables, particularly when assumptions necessary for 
ordinary multiple linear regression cannot be met. Partial 
least squares regression (PLS) is an approach to quanti-
tative modeling of empirical relationships using covari-
ance structures among strongly collinear, noisy variables 
(Abdi, 2003; Wold et al., 2001). Hence, use of PLS pres-
ents a promising approach for improved understanding of 
regional crop yield variability.

The goal of our analysis was to construct empirical 
models that describe recurrent spatial patterns of yield vari-
ability across a landscape in association with regional-level 
environmental variables, to improve understanding of the 
relationship between crops and regional environmental het-
erogeneity, and to identify potentially important drivers in 
regional yield variability. We hypothesized that longer-term 
spatial patterns of yield variability, as described by diff erences 
among regions within a landscape, were nonrandom and 
that these patterns were nonrandomly associated with diff er-
ences in environmental conditions among regions. We also 
hypothesized that yield variability could be described using a 
limited set of environmental parameters.

We conducted geographic analysis of yield variability 
of corn (Zea mays L.), soybean [Glycine max (L.) Merr.], 
alfalfa (Medicago sativa), and oat (Avena sativa L.), four func-
tionally diff erent crops grown throughout the study area 
of Iowa. Our objectives were (i) to quantitatively describe 
spatial distribution of mean annual yields and the coef-
fi cient of variation of mean annual yields across the study 
area landscape, (ii) to quantitatively describe the spatial 
distribution of selected mean climatic, edaphic, and topo-
graphic conditions across the study area landscape, (iii) to 
quantify the degree of association between distributions 
of yield variability and environmental conditions, and (iv) 
to develop hypotheses about observed patterns. Regional-
level analysis of recurrent spatial patterns of yield vari-
ability using spatially referenced data in combination 
with PLS modeling presents an opportunity for exploring 
empirical relationships between crop yields and environ-
mental characteristics at spatial and temporal scales previ-
ously under-represented in the agronomic literature.

MATERIALS AND METHODS

Study Area
The area of this study was the state of Iowa, located between 

89º30′00″ and 96º30′00″, and 40º30′00″ and 43º30′00″. Total 

area of Iowa is approximately 145,785 km2, and elevation ranges 

from 146 to 509 m above sea level. Because of its latitude and 

interior continental location, Iowa’s climate is characterized by 

distinct seasonal variation, with long, hot summers (Strahler 

and Strahler, 1984). Principal soil orders are mollisols, alfi sols, 

inceptisols, and entisols (NRCS, 1999). About 89% of the land 

area of Iowa is in cultivation, and corn and soybean account for 

93% of total land area harvested (USDA-ERS, 2007). Average 

annual temperature of Iowa ranges from 7.2°C in the extreme 

north to 11.1°C in the southeast. Average annual precipitation 

is 864 mm, ranging from 660 mm in the northwest to 965 mm 

in the southeast.

Regions
To measure and defi ne yield variability, and to analyze asso-

ciations of yield variability with environmental heterogeneity 

across the Iowa landscape, it was necessary to discretize the 

study area into spatial units (regions). State political subunits, or 
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(CV%) among counties. We used crop yield data for the 20-yr 

period 1985–2004 because this period is likely representative of 

gains in corn yield throughout the latter half of the 20th cen-

tury (Duvick and Cassman, 1999), and other agronomic crops 

have likely followed similar patterns of improvement. Yield data 

were acquired in tabular format from the National Agricultural 

Statistics Service (NASS, 2005). In our analyses, N = 99.

Environmental Variables
Based on associations of yields with environmental character-

istics reported in the literature and the limits of data availabil-

ity, we selected 12 environmental characteristics as potentially 

important to yield variability (Table 1). These 12 predictors 

include climatic, edaphic, and topographic attributes of the 

study area. To maintain a one-to-one relationship with yields 

and environmental characteristics, we used county-level envi-

ronmental data. The 12 predictors were calculated as spatial 

means, with the exception of two climate variables. Variabil-

ity of annual precipitation and variability of growing-season 

precipitation were calculated as temporal variances of spatially 

averaged variables.

Spatial averages of temporally permanent topographic and 

edaphic variables (i.e., county means) include land that is not 

in production. Bias in spatial averages of environmental vari-

ables may be a result. Unfortunately, the spatial distribution 

of crop production within counties is not reported in agricul-

tural statistics, and land-cover data are unavailable year-to-year. 

Therefore, it is not possible to omit from spatial averaging of 

environmental variables those areas that are not in production, 

and it is unknown to what degree, if any, inclusion of these 

lands has introduced bias into the analysis. However, approxi-

mately 89% of the Iowa land surface is in agronomic production 

(USDA-ERS, 2007), which may limit the amount of bias unac-

counted for as a result of inclusion of lands not in production.

Signifi cant associations between crop yields and climate, 

including air temperature, precipitation, growing season length 

counties, are the smallest spatial unit for which agricultural sta-

tistics in Iowa are reported (NASS, 2005). Although these data 

give no clue of the geographic distribution of crop yields within 

counties, they provide information about the distribution of 

yields across the entire Iowa landscape. Iowa’s 99 counties are 

relatively uniform in size and shape (e.g., rectangular), averag-

ing 148,600 ha, and therefore are used as regions for spatial 

analysis in our study. Hence, for our analyses, N = 99.

Crop Yields
Crop yield can be characterized by mass per unit area (Evans 

and Fischer, 1999) and relative degree of constancy year to year 

(Mead et al., 1986). Using these two metrics, yield can be char-

acterized as low and relatively constant year to year, low and 

relatively inconstant year to year, high and relatively constant 

year to year, or high and relatively inconstant year to year. Thus, 

yield stability, as defi ned by variability over time and space, can 

be measured by (i) average yield and (ii) the CV (i.e., CV%; 

Berzsenyi et al., 2000; Dobermann et al., 2003). These yield 

stability metrics can then be aggregated over larger geographic 

areas (Popp et al., 2005). In conventional agronomic studies, 

yield across years is measured by location–year data (e.g., county 

yield for each year within a period of years of observation). 

However, we hypothesized that although absolute yields have 

increased over the 20-yr study period (1985–2004), yield trends 

among counties would not be signifi cantly diff erent, and there-

fore, use of annual yield would not increase the information in 

the data. Hence, we used county mean yields averaged across 

the 20-yr study period of the four crops as dependent vari-

ables. County mean yield (hereafter, mean yield) was defi ned as 

total harvest (kg) divided by total area harvested (ha) per year, 

averaged across years. Four additional dependent variables were 

obtained from CVs of county mean yields among the 20 yr in 

the study for the four crops. In this study, then, yield stability 

across the Iowa landscape is measured as diff erences in mean 

yield among counties and diff erences in the CV of mean yield 

Table 1. Summary of environmental parameters.

Category Parameter Units Description Source

Climatic Mean annual precipitation mm Average amount of precipitation within a 

year

Iowa State  University, 

Department of 

 Agronomy (2005)Standard deviation of mean annual precipitation mm

Mean growing season precipitation mm Average amount of precipitation between 

average date in spring with less than 20% 

chance of frost, and average date in fall 

with greater than 20% chance of frost

Standard deviation of mean growing season precipitation mm

Edaphic Percent organic matter % Percentage of organic matter in tilled 

surface

Iowa State 

University (2004)

Cation exchange capacity cmol
c
 kg–1 Sum of exchangeable cations held by soil

Plant-available water capacity cm cm–1 soil Difference between amount of soil water 

at fi eld capacity and wilting point

Depth to seasonally high water table m Depth to level of a saturated zone for 30+ 

days in most years

Percent sand % Percentage of sand in surface horizon

Permeability mm h–1 Rate which water moves down through 

saturated soil

Low value of pH range Measure of acidity or alkalinity

Topographic Slope gradient degrees Degrees from horizontal USGS (1999)
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and heat accumulation, have been reported (DeWit et al., 2005; 

Wassenaar et al., 1999). Although temperature during the 

growing season, growing season length, and heat accumula-

tion infl uence absolute yield, we posit that diff erences in these 

climate attributes would be insuffi  ciently large across the study 

area to account for diff erences in yields among regions. There-

fore, we included only precipitation variables in our models.

Precipitation predictors were derived from daily weather 

observations for the period 1985 to 2004, originating from 

98 National Weather Service Cooperative Stations (NWSCS) 

evenly distributed among Iowa’s counties (Iowa State Univer-

sity, Department of Agronomy, 2005). The NWSCS station 

in each county was considered representative of the county. 

Because Story County did not have a station, it was assigned 

values from the nearest station, in adjacent Boone County. 

Growing season was determined for each observation sta-

tion as the number of days between the mean day-of-year in 

spring with less than 20% chance of the air temperature falling 

below 0°C, and mean day-of-year in fall with a greater than 

20% chance of the air temperature dropping below 0°C. The 

amount of precipitation falling between these dates each year 

was determined as growing-season precipitation and was aver-

aged across the observation period.

Signifi cant relationships have also been found between 

spatial variability of crop yields and topographic attributes of 

elevation, slope, slope position, slope curvature, and aspect 

(Batchelor et al., 2002; Kravchenko and Bullock, 2000; Timlin 

et al., 1998; Wassenaar et al., 1999). Because our focus is the 

regional level (areas of tens of thousands of hectares), we did 

not include in our models topographic characteristics that were 

likely to have only local (i.e., within-fi eld) infl uences, including 

slope curvature, aspect, and slope position. We also posited that 

the elevational range of Iowa was probably too small to have a 

signifi cant infl uence on yield diff erences among regions, and it 

too was omitted from this study.

Slope was derived from the publicly available National 

Elevation Dataset (NED; USGS, 1999) in raster format at 30-m 

resolution. The NED consists of merged sets of digital elevation 

models at the 1:24,000 scale for the conterminous United States 

and provides the best currently available data. Vertical accuracy 

of the NED is estimated as ± 7 to 15 m (USGS, 2006). County 

means were calculated using the Zonal Statistics Tool with a 

county boundary data layer in ArcGIS 9.1 (ESRI, 2005).

Reports of signifi cant relationships between yields and 

soil pH, cation exchange capacity, permeability, texture, water 

capacity, and depth to water table are abundant in the literature 

(e.g., Gish et al., 2005; Kaspar et al., 2004). These chemical 

and physical properties of soil may be relevant at broader spa-

tial scales and over longer time spans as these soil attributes 

change relatively little compared to temporal weather condi-

tions. These soil attributes are likely suffi  ciently varied across 

Iowa to infl uence regional yield diff erences and are therefore 

included in this study.

Soil predictors were derived from the publicly available 

Iowa Soil Properties and Interpretation Database 7.0 (ISPAID), 

which consists of rasterized national soil maps originating from 

the U.S. Natural Resources Conservation Service (Iowa State 

University, 2004). We used data from the ISPAID dataset that 

contains values for selected soil characteristics in a raster format 

at 100-m resolution. Values for soil characteristics are from sur-

face layers, usually less than 19 cm from the top of soil, with 

the exception of depth to seasonally high water table. County 

means of each parameter were calculated using the Zonal Sta-

tistics Tool with a county boundary data layer in ArcGIS 9.1 

(ESRI, 2005).

Statistical Models

Yield Trend
Crop and management improvements over the past century 

have greatly improved crop yields (Duvick and Cassman, 1999). 

It was hypothesized that rate of yield increase over the observa-

tion period would be equal among counties. Therefore, rate 

of yield increase would not explain diff erences in mean yields 

among counties and hence, not be a signifi cant infl uence on 

longer-tern recurrent spatial patterns of yield stability. This 

hypothesis was tested using a year-from-base parameter with a 

unique identifi cation number for each county to construct an 

interaction term, county x year-from-base.

Yield Stability
Analysis of spatial pattern of yield stability was conducted as a 

necessary fi rst step in recognition of recurrent patterns and to 

inform hypothesis formulation. Moran’s Index of spatial auto-

correlation (Fortin and Dale, 2005, p. 124) was used in ArcGIS 

to determine whether distribution of mean yields and yield CVs 

among counties were randomly distributed, evenly distributed, 

or clustered. It is possible that low mean yields can occur in a 

stable system (i.e., relatively invariable; Berzsenyi et al., 2000; 

Mead et al., 1986). However, we hypothesized that mean yields 

would be negatively associated with yield CV (i.e., low yields 

would be associated with higher CVs). Therefore, pairwise cor-

relation (SAS Institute, 2005) was used to test the relationship 

between mean yields and yield CVs.

Partial Least Squares Regression Models
Partial least squares regression is a multivariate regression 

method designed to build prediction models with highly cor-

related predictors and responses. Partial least squares is particu-

larly well suited to complex environmental characteristics and 

crop responses, which can be highly collinear (Nguyen and Lee, 

2006; Vågen et al., 2006). The PLS algorithm is an iterative pro-

cedure in which successive linear combinations of derived pre-

dictors, termed latent variables, are extracted so as to maximize 

the covariance between the linear combination of predictors and 

the response(s). Each successive latent variable is computed to be 

orthogonal to the previous latent variable and predicts the maxi-

mum proportion of variability in the response not predicted by 

prior latent variables (Frank and Friedman, 1993).

Partial least squares regression was used to develop pre-

diction models of crop yield and crop CV. After data were 

centered and scaled, each of the eight responses (four yield 

responses and four CV responses) was regressed on the 12 envi-

ronmental variables shown in Table 1 using PLS. Although it 

is possible to model simultaneously several responses in PLS, 

because this focus of this study was four functionally diff erent 

crops, crop responses were modeled separately. We estimated 

the proportion of variance predicted for models containing 
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from 1 to 12 factors. Signifi cance of the addi-

tion of each success factor was tested using a 

delete-one cross validation approach in com-

bination with van der Voet’s (1994) test. The 

predicted residual sum of squares (PRESS) 

was estimated using delete-one cross-valida-

tion. Specifi cally, one observation at a time 

was removed, and the residual for the deleted 

observation was computed from the predicted 

value of that observation. Squared residuals were summed across 

observations to obtain the PRESS statistic. The signifi cance of 

each factor was determined by comparing the PRESS statis-

tics between the model with the smallest PRESS statistic and 

all models with a smaller number of factors. According to the 

van der Voet’s (1994) procedure, the model with the smallest 

number of factors and a PRESS statistic that is not signifi cantly 

larger than the minimum PRESS is taken as the fi nal model. 

Signifi cance of the diff erence in PRESS values was determined 

by using a Monte Carlo simulation of the diff erences in PRESS 

statistics as implemented in SAS Proc PLS (SAS Institute, 2005). 

We used 100,000 Monte Carlo samples to determine p-values 

because with 100,000 samples, p-values were relatively stable 

across runs.

RESULTS AND DISCUSSION

Yield Trend
Summary statistics of crop yields are provided in Table 2. 
Mean yields of all four crops increased signifi cantly over 
the period of observation (Table 3). The rate of increase 
computed by regression of mean yields on year-from-base 
for each individual county was found to be the same across 
all 99 counties for all crops but oat (Table 3), suggesting 
that use of 20-yr averages across counties is a suffi  cient 
representation of mean yields among counties for corn, 
soybean, and alfalfa. For the observation period, lowest 
mean oat yields for 75 of Iowa’s 99 counties occurred in 
1993, a year of unprecedented fl ooding ( Johnson et al., 
2004) in Iowa and the midwestern United States in gen-
eral. Diff erences in oat yield trends among counties with 
1993 data omitted are not signifi cant (F = 0.87, prob. 
0.79), suggesting that use of longer-term averages of oat 
yield provides suffi  cient representations among counties. 
Therefore, county mean oat yield, inclusive of 1993 data, 
is also used as a dependent variable in crop models.

Spatial Patterns of Yield Stability
Yield distributions of all crops exhibited a negative 
skewness (Table 2), where the number of counties with 
below-mode yield exceeded the number of counties with 
above-mode yield. Several counties had far-below mode 
yield (data not shown). Although Iowa possesses some of 
the best agricultural soils in the world (Prior, 1991), the 
skewing of the distribution of mean yields indicates (i) 
that only a few counties are “elite among the elite” and (ii) 
that there are diff erences among counties in the amount 
and use of “marginal” lands. While the actual amount 

of agronomic crop production on marginal lands over 
the observation period is unknown, enrollment of lands 
in the Conservation Reserve Program (CRP) provides a 
general indication of the distribution of marginal lands in 
Iowa. According to Secchi and Babcock (2007), the great-
est amount of Iowa CRP lands is in the southern tier of 
counties, particularly among south-central counties. The 
amount of CRP in northeastern Iowa is also relatively 
high, but the fewest CRP lands are in central, north-cen-
tral, and extreme northwestern Iowa. Regardless, visual 
examination of residual plots of the regressions of county 
mean yield on year-from-base (not shown) did not indi-
cate evidence of serious assumption violations.

Mapped county mean yields are shown in Fig. 1. The 
geographic distributions of county mean yields of all four 
crops were signifi cantly clustered, according to the Moran’s 
I (Table 4). For all four crops, counties with higher mean 
yields occur in the northern two-thirds of the state, and 
counties with lower mean yields occur in the southern 
third of the state. Additionally, there are visible diff erences 
between the grass crops (corn and oat) and legume crops 
(soybean and alfalfa) in the distribution of mean yields 
within these two broader areas. Counties of higher mean 
yields of grass crops occur in central and northwestern 
Iowa, whereas counties of higher mean yields of legume 

Table 2. Crop yield summary statistics for the observation period 1985–2004.

Crop Mean SD Min. Max. Median
Interquartile 

range 
Skewness 

Corn (kg ha–1) 8280.42 617.20 6540.7 9197.4 8368.0 759.1 –1.003

Soybean (kg ha–1) 2804.03 195.52 2315.4 3295.3 2828.0 232.4 –0.344

Alfalfa (Mg ha–1) 8.01 0.72 6.469 9.726 8.06 0.96 –0.211

Oat (kg ha–1) 2302.63 283.55 1666.1 2783.1 2372.3 397.8 –0.612

Table 3. Yield trends for the 99 Iowa counties and observa-

tion period 1985–2004.

Crop (R2; RMSE) df F ratio P > F

Corn (0.43; 1389.69) 197 6.86 <0.0001

   YFB† 1 904.12 <0.0001

   County 98 3.94 <0.0001

   YFB × county 98 0.63 0.99

Soybean (0.26; 430.00) 197 3.24 <0.0001

   YFB 1 212.96 <0.0001

   County 98 4.13 <0.0001

   YFB × county 98 0.22 1.00

Oat (0.26; 430.00) 197 4.51 <0.0001

   YFB 1 91.34 <0.0001

   County 98 5.69 <0.0001

   YFB × county 98 2.50 <0.0001

Alfalfa (0.34; 1.23) 197 4.72 <0.0001

   YFB 1 162.77 <0.0001

   County 98 6.85 <0.0001

   YFB × county 98 0.97 0.53

†YFB, year from base, the fi rst year of the study (1985) being year 0; the second year 

(1986) is YFB 1, and so on.
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crops occur in extreme northwest, western, and east-cen-
tral Iowa. For all four crops, highest yield CVs occurred 
in counties of the southern third of the state, and lowest 
yield CVs occurred in counties of the northern two-thirds 
of the state (Fig. 2).

The general geographic pattern of association of 
higher yields with lower yield CVs (or lower yields with 
higher yield CVs) is supported by correlation analysis. For 
all four crops, mean yields were signifi cantly negatively 
correlated with yield CVs (Table 5), similar to the fi ndings 
of Tollenaar and Lee (2002), who reported an inverse rela-
tionship between mean yield and relative yield constancy 

in commercial maize hybrids. On the basis of mean yield 
and yield CV relationships, two distinct provinces of yield 
stability can be described: one of high and relatively con-
stant mean yields in the northern two-thirds of the state, 
and the other of low and relatively inconstant mean yields 
in the southern third of the state.

There are substantial north-south diff erences in cli-
mate, soils and geomorphology in Iowa. Mean annual 
precipitation and mean growing season precipitation are 
greatest in the southeast and decrease to the northwest 
(Prior, 1991). Similarly, interannual variability of pre-
cipitation is greatest in the southern portions of Iowa, 

Figure 1. The distribution of mean yields (1985–2004) of four crops grown throughout the state of Iowa. The highest-yielding counties of all 

four crops occur in the northern two-thirds of the state, and counties with lowest mean yields occur in the southern third of the state.
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decreasing to the northwest. Soils in the southern third 
of Iowa are loess-derived with greater agronomic limi-
tations compared to the till-derived, organic matter-rich 
soils in the central and northern portions of the state 
(Prior, 1991). Topography of the southern third of the 
state is rolling, with shallow bedrock and limited level 
upland, whereas central and northern portions of Iowa are 

relatively level and undissected (Prior, 1991). Williams et 
al. (2008) describe agroecozones of Iowa by such regional 
diff erences in dominant environmental characteristics, as 
well as unique combinations of climatic, edaphic and top-
ographic factors. As such, Iowa can be described as hav-
ing two broad environmental provinces; one in the south 
characterized by relatively high amounts of precipitation 

Table 4. Values of the Moran’s I test for spatial randomness.

Crop 
response

Corn mean 
yield

Corn CV
Soybean mean 

yield
Soybean CV

Mean oat 
yield

Oat CV
Alfalfa mean 

yield
Alfalfa CV

Moran’s I (P-value) 0.21 (<0.001) 0.24 (<0.001) 0.14 (<0.001) 0.11 (<0.001) 0.25 (<0.001) 0.07 (<0.001) 0.20 (<0.001) 0.08 (<0.001)

Figure 2. The distribution of yield CVs for the four crops of this study, indicating that the southern third of the state is a province of low 

yield constancy for all four crops.
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and higher variability of precipitation, soils with relatively 
high agronomic limitations, and substantial portions of 
the land surface with relatively steep slopes. The other 
environmental province can be characterized as having 
lesser precipitation but relatively high constancy of pre-
cipitation, agronomically superior soils, and fewer areas of 
slope-limited suitability.

Models of Yield-Environment Associations
The performance of the PLS models, as measured by the 
coeffi  cient of determination of the model (R2; Nguyen and 
Lee, 2006) indicates that generally, a high amount of varia-
tion in crop response variables was accounted for by the 
environmental variables (Table 6). Parameter estimates for 
the PLS prediction equations are provided in Table 7. Each 
equation was obtained with the corresponding number of 
signifi cant latent variables for each crop response. Overall, 
the amount of variation explained was greater among mean 
yield models than yield CV models. The amount of total 
variation explained among all eight models ranged from 
50% (alfalfa yield CV) to 81% (corn mean yield). Quantile–
quantile plots indicated that predicted values were within 
two standard deviations of observed values (i.e., plotted 
points approximate a 45 degree line; not shown) and thus 
affi  rm model performance as good. Less than 5% of counties 
fell outside the two-standard deviation range. We interpret 
the performance of the PLS models (e.g., high R2 values) as 
indication of the overall importance of the selected envi-
ronmental variables to the observed spatial patterns of yield 
stability of the agronomic crops of this study.

For each crop response, the optimum number of latent 
variables was less than seven (Table 6). Although inclu-
sion of additional latent variables would have increased the 
amount of total variation taken into account, and mini-
mized the absolute value of the PRESS, the optimal number 
of latent variables was determined as the number of factors 
after which explained variance no longer increased signifi -
cantly (i.e., comparative p value > 0.05, Table 6; Geladi 
and Kowalski, 1986; Vågen et al., 2006). The loadings of 

environmental variables on the fi rst latent variable (also 
known as X-loadings) are shown in Fig. 3. Magnitude of 
loadings (i.e., high values) correspond to maximum pre-
diction information (Janik and Skjemstad, 1995) and is an 
indication of importance (Wold et al., 2001; Devillers et al., 
2004; Holland et al., 2002; Nguyen and Lee, 2006). Sign of 
loadings indicates the direction of correlation (Wold et al., 
2001). Loadings, however, are not necessarily direct indica-
tors of functional drivers of response variables in the “soft 
modeling” approach of PLS (Abdi, 2003; Tobias, 2007). 
Although total variation of crop responses was maximized 
in some cases with up to seven latent variables, a large num-
ber of latent variables can make interpretation of individual 
predictors diffi  cult (Wold et al., 2001). Most of the vari-
ability of all crop responses was explained by the fi rst latent 
variable (Table 6); therefore, the fi rst latent variable is used 
for interpretation of yield–environment associations in the 
following discussion.

Models of Mean Yield

For all four crops, mean growing season precipitation, the 
standard deviation of annual precipitation, the standard devi-
ation of growing season precipitation, mean soil permeability, 
and mean slope were of moderate to high relative impor-
tance in explanation of the distribution of mean yields among 
counties (i.e., moderately high loadings for these variables; 
Fig. 3a). Loadings of relatively low magnitude were found for 
all four crop responses on mean annual precipitation, mean 
available water capacity, and mean cation exchange capacity 
(Fig. 3a). The magnitude of these loadings indicates that rela-
tive to other environmental characteristics, these variables 
were relatively less important in explanation of spatial vari-
ability of mean yield among counties.

The loadings of the remainder of the environmen-
tal variables (i.e., those with highest relative importance) 
indicate diff erences between the grass crops (corn and oat) 
versus the legume crops (soybean and alfalfa). Loadings for 
mean organic matter were very high for corn and oat but 
relatively low for soybean and alfalfa (Fig. 3a). Substantial 

Table 5. Correlation matrix of mean yield and yield CV.

Crop response
Mean corn 

yield
Corn 
CV

Mean soybean 
yield

Soybean 
CV

Mean alfalfa 
yield

Alfalfa 
CV

Mean oat 
yield

Oat CV

Mean corn yield 1

Corn CV –0.76*** 1

Mean soybean yield 0.78*** –0.70*** 1

Soybean CV –0.03 –0.04 0.21* 1

Mean alfalfa yield 0.67*** –0.65*** 0.71*** 0.32** 1

Alfalfa CV –0.34*** 0.45*** –0.48*** –0.24* –0.47*** 1

Mean oat yield 0.85*** –0.66*** 0.68*** –0.01 0.76*** –0.38*** 1

Oat CV –0.38** 0.55*** –0.52*** –0.30** –0.49*** 0.58*** –0.344** 1

*Signifi cant at the 0.05 probability level.

**Signifi cant at the 0.01 probability level.

***Signifi cant at the 0.001 probability level.
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diff erences between the grass crops and legume crops were 
also observed in the loadings of mean depth to seasonally 
high water table (Fig. 3a). Loadings for mean percentage 
sand were almost identical (positive) for the grass crops and 
very similarly negative for the two legume crops (Fig. 3a).

The relationship of the grass crops with mean organic 
matter is graphically represented in visual comparison of 
mean yield maps (Fig. 1) with a map of mean organic mat-
ter (Fig. 4). Counties of higher mean yields of corn and 
oat correspond to counties of higher mean organic matter, 
which also happen to be counties of high mean percentage 
sand and mean pH (data not shown). Grasses, incapable of 

fi xing atmospheric nitrogen like the leguminous crops, 
are dependent on soil organic matter (and external inputs) 
for nitrogen, and the occurrence of higher mean yields 
within areas of highest soil organic matter therefore comes 
as no surprise. It is also little surprise then, that the grass 
crops had higher loadings for soil pH compared with the 
leguminous crops as this soil characteristic has important 
infl uences on mineralization of nitrogen necessary for uti-
lization by grass crops (Troeh and Thompson, 1993).

The counties of highest mean soybean and alfalfa yields 
were in the northwestern and northeastern portions of the 
state, corresponding to counties of greater mean depth to 

Table 6. Partial least squares regression (PLS) analysis of mean yield and yield CV, with cross-validation.

Response Crop
Number of 
PLS factors

Percent XY variation accounted for (R2) Cross-validation

Current Total PRESS† Comparison p

Mean yield Corn 1 45.43 45.43 0.772 0

2 19.98 65.42 0.672 0.0003

3 7.62 73.05 0.613 0.0002

4 2.09 75.14 0.598 0.0372

5 4.22 79.36 0.552 0.0208

6 1.52 80.88 0.512 0.0605

7 0.59 81.47 0.502 0.1102

Soybean 1 33.53 33.53 0.865 0

2 16.15 49.69 0.797 0

3 8.68 58.37 0.751 0.0273

4 3.40 61.78 0.725 0.0358

5 3.34 65.12 0.704 0.0817

Oat 1 56.16 56.16 0.683 0

2 13.25 69.42 0.595 0

3 4.39 73.82 0.564 0.0032

4 0.47 74.29 0.561 0.1742

Alfalfa 1 47.58 47.58 0.756 0

2 13.19 60.77 0.672 0

3 4.33 65.11 0.654 0.0191

4 2.18 67.29 0.639 0.0440

5 1.09 68.38 0.640 0.4196

Yield CV Corn 1 52.26 52.26 0.720 0

2 10.22 62.48 0.672 0.0004

3 4.72 67.20 0.640 0.0015

4 1.52 68.73 0.626 0.0640

5 2.62 71.35 0.606 0.1687

Soybean 1 38.73 38.73 0.816 0

2 9.09 47.82 0.768 0

3 9.57 57.39 0.716 0.0044

4 3.73 61.13 0.696 0.0101

5 1.56 62.69 0.702 0.2078

Oat 1 41.04 41.01 0.818 0

2 9.19 50.23 0.776 0.0002

3 3.14 53.37 0.771 0.1263

Alfalfa 1 45.01 45.01 0.772 0

2 4.90 49.91 0.752 0.0014

3 3.52 53.43 0.741 0.1118

†PRESS, predicted residual sum of squares.
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seasonally high water table (Fig. 4), which also happen to 
be counties of lower mean pH and lower mean percent-
age sand (data not shown). The associations of soybean and 
alfalfa yields with depth to water table are documented in 
agricultural education materials (Hall et al., 2004), as well 
as peer-reviewed literature (Ogunremi et al., 1981). Legu-
minous crops do not tolerate saturated soils (i.e., high water 
tables) because of eff ects on nodulation and fi xing of atmo-
spheric nitrogen, as well as increased incidence of fungal 
diseases. High soil pH has been associated with soybean 
disease (Sanogo and Yang, 2001) and may therefore account 
for lower soybean yields in central and north-central Iowa 
compared to mean yields of corn and oat. Similarly, potas-
sium availability may be limited in higher soil pH, and this 
may be an underlying cause of lower relative yields of alfalfa 
in central and north-central Iowa (area of highest corn and 
oat yield; Peters et al., 2000).

The direction of correlation between all four mean 
yield responses and all seven soil variables was positive (Fig. 

3). The direction of this correlation is not surprising given 
the published information on the relationships between 
yields and these variables (Kaspar et al., 2004; Kravchenko 
and Bullock, 2000). Likewise, the direction of correlation 
between all four mean yield responses and slope was nega-
tive (Fig. 3). The direction of this correlation is also not 
surprising given the published information on the yield-
reducing eff ects of increased slope (Kravchenko and Bull-
ock, 2000; Kravchenko et al., 2005; Timlin et al., 1998). 
However, the negative direction of correlation between all 
four mean yield responses and the four climatological pre-
dictor variables (Fig. 3), requires interpretation. Precipita-
tion in Iowa is generally adequate to maintain a positive 
moisture balance (Widrlechner, 1999), and the geographic 
pattern of mean growing-season precipitation decreases 
from southeast to northwest (Fig. 5a) and is similar for 
mean annual precipitation (not shown). Mean annual pre-
cipitation and mean growing-season precipitation have 
signifi cant negative bivariate correlations with all four 

Table 7. Partial least squares regression (PLS) parameter estimates.

Parameter

PLS model

Mean yield Yield CV

Corn Soybean Oat Alfalfa Corn Soybean Oat Alfalfa

Intercept† 5777.91 2706.84 1973.99 9.82 35.35 30.99 21.39 20.07

AP 0.60 0.30 –0.09 –0.0007 0.005 0.003 –0.001 0.0001

APSD –3.10 –1.00 –1.77 –0.005 0.02 0.004 0.02 0.02

AWC 0.02 0.006 0.007 7.5E-07 –0.0001 –0.004 –0.0001 –0.0002

CEC –11.80 –0.85 –0.17 –0.01 0.07 –0.05 0.24 0.02

GSP –0.15 –0.29 –0.67 –0.002 –0.002 –0.005 0.0001 –0.0006

GSPSD –0.98 0.19 –0.56 –0.003 0.07 0.001 0.005 0.01

OM 1.83 0.29 0.48 0.0008 –0.009 –0.0005 0.0002 0.0009

PRM 0.05 0.02 0.02 6.8E-05 –0.0002 –0.0002 –0.0003 –0.0001

pH 2.05 –0.48 0.99 0.0006 –0.03 –0.01 –0.002 –0.003

SND –2.30 –3.95 1.09 –0.006 –0.02 0.14 0.02 0.04

SLP –190.50 –76.86 –76.62 –0.12 0.17 0.49 0.27 –0.003

WT 1.92 0.60 0.64 0.002 –0.009 –0.003 –0.01 –0.007

Centered and scaled values

Intercept 0 0 0 0 0 0 0 0

AP 0.06 0.10 –0.02 –0.07 0.09 0.11 –0.03 0.002

APSD –0.15 –0.15 –0.19 –0.19 0.17 0.05 0.16 0.22

AWC 0.06 0.06 0.05 0.002 –0.07 –0.28 –0.07 –0.14

CEC –0.07 –0.02 –0.002 –0.06 0.07 –0.07 0.22 0.03

GSP –0.01 –0.07 –0.11 –0.12 –0.03 –0.10 0.002 –0.01

GSPSD –0.05 0.03 –0.06 –0.12 0.13 0.02 0.04 0.13

OM 0.34 0.17 0.19 0.12 –0.25 –0.02 0.007 0.04

PRM 0.31 0.38 0.30 0.38 –0.16 –0.34 –0.28 –0.21

pH 0.15 –0.11 0.16 0.04 –0.32 –0.19 –0.02 –0.06

SND –0.03 –0.16 0.03 –0.06 –0.05 0.44 0.04 0.12

SLP –0.38 –0.49 –0.33 –0.21 0.06 0.24 0.09 –0.002

WT 0.52 0.52 0.38 0.40 –0.40 –0.22 –0.51 –0.41

†AP, mean annual precipitation; APSD, standard deviation of mean annual precipitation; AWC, plant-available water capacity; CEC, soil cation exchange capacity; GSP, mean 

growing season precipitation; GSPSD, standard deviation of mean growing season precipitation; OM, soil organic matter; PRM, soil permeability; SND, soil percentage 

sand; SLP, slope; WT, depth to seasonally high water table.



CROP SCIENCE, VOL. 48, JULY–AUGUST 2008  WWW.CROPS.ORG 1555

mean crop yields (data not shown), and the 
relationships can be visualized through 
comparison of the map of mean growing 
season precipitation (Fig. 5a) and maps of 
mean crop yields (Fig. 1). However, pre-
cipitation should not be interpreted as driv-
ing yields. Instead, because precipitation is 
generally adequate for rainfed agriculture 
throughout the state, it is more likely that 
other variables are infl uencing yield. That 
is, the general spatial pattern of crop yields 
in Iowa is such that locations with higher 
yields are locations with better soils and, 
by geographic happenstance are also those 
locations with lower precipitation. Sup-
port for this interpretation is found in the 
signifi cant negative bivariate correlations 
of mean growing season precipitation 
with mean organic matter (r = −0.25, p 
< 0.01), mean pH (−0.37, p < 0.01), and 
mean depth to water table (r = −0.30, p < 
0.01), and similar with mean annual pre-
cipitation (not shown). As discussed above, 
these soil variables were highly important 
in the fi rst latent variable and had positive 
correlation directions with mean yields.

Models of Yield Coeffi cients 
of Variation

Unlike the mean yield models, crops did 
not have the same environmental vari-
ables with highest relative importance 
among the CV models. There were fewer 
instances of distinct diff erences between 
grass crops versus legume crops compared 
to the mean yield models. On the fi rst 
latent variable, magnitudes of loadings 
of all four crops were similarly moderate 
for the standard deviation of mean annual 
precipitation and mean growing season 
precipitation (Fig. 3b), indicating moder-
ate relative importance of these climate 
variables for all four crops. Small-to-moderate diff erences 
in magnitude of loadings among grass crops versus legume 
crops was observed for mean available water capacity, mean 
cation exchange capacity, mean organic matter, mean pH, 
and mean slope, although the signs of the loadings among 
the grass crops and among the legume crops were opposite 
for mean cation exchange capacity, mean organic mat-
ter, mean pH, and mean slope (Fig. 3b). The loadings for 
mean percentage sand and mean depth to seasonally high 
water table indicate moderate-to-high relative importance 
of these variables for all the crops except corn, for which 
they are relatively unimportant (Fig. 3b).

Diff erences in the magnitudes of the loadings among 
the CV models indicate that diff erences among the legume 
crops were minimal. The diff erences between the legume 
crops versus corn were moderate, as were the diff erences 
between the legume crops versus oat. However, the most 
striking pattern among the yield CV models are the dif-
ferences among the grass crops. A diff erence of 0.24 was 
observed in the magnitudes of the loadings for the stan-
dard deviation of mean growing season precipitation of the 
grass crops (higher for corn; Fig. 3b). Water use effi  ciency 
of the C

4
 crops (e.g., corn) is generally greater than that of 

the C
3
 (e.g., oat) particularly under conditions of heat stress 

Figure 3. Loadings for the fi rst latent variable of the crop models. (A) Differences in the 

relative importance of specifi c environmental variables in the models of mean yields 

indicate differences between the grass crops versus the legume crops. B) Differences 

in the relative importance of specifi c environmental variables in the yield CV models 

is greater between corn and oat, than between the grass crops versus legume 

crops. AP, mean annual precipitation; APSD, standard deviation of mean annual 

precipitation; AWC, mean plant available water capacity; CEC, mean cation exchange 

capacity; GSP, mean growing season precipitation; GSPSD, standard deviation of 

mean growing season precipitation; OM, mean % organic matter; pH, mean pH; PRM, 

mean soil permeability; SLP, mean slope; SND, mean % sand; WT, mean depth to 

seasonally high water table.
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(Long, 1999). However, water availability during anthe-
sis and grain-fi ll are critical for corn (Classen and Shaw, 
1970; NeSmith and Ritchie, 1992). Therefore, interannual 
variability of growing season precipitation could greatly 
infl uence interannual corn yield variability. The grass 
crops diff ered by 0.33 in the magnitudes of loadings for 
mean permeability (highest for oat), by 0.33 in the mag-
nitudes of loadings for mean percentage sand (highest for 
oat), and by 0.47 in the magnitude of loadings for mean 
depth to seasonally high water table (highest for oat; Fig. 
3b). That is, mean permeability, mean percentage sand, and 
mean depth to seasonally high water table were of moder-
ate to high relative importance in the CV of oat and of 
low or very little relative importance in corn CV. Percent-
age sand, permeability, and depth to seasonally high water 
table aff ect soil drainage. Oat is an early crop, dependent on 
cool weather for high yields (Stoskopf, 1985). Well-drained 
soils warm sooner than less-well-drained soils, permitting 
earlier planting of oats and decreasing the chances of yield-
reducing late-season heat (Stoskopf, 1985).

Lobell and Ortiz-Monasterio (2006) found that spatial 
patterns of yield contain information on the relative impor-
tance of soil and management factors in yield variability. 
Calvino and Sadras (1999) found variation in the interactions 
of soil depth and precipitation variability resulting in variation 
of water availability, leading to variation in soybean yields. 
In a test of simulation models, Riha et al. (1996) examined 
the infl uence of variability of temperature and precipitation 
on crop yields at locations among three soil types and found 
that the yield-reducing eff ect of increased precipitation vari-
ability was mediated by soil characteristics. This suggests that 

in southern Iowa, relatively high interannual variability of 
precipitation cannot be mediated by soil characteristics.

Regarding the sign of loadings, a pattern opposite that 
of the mean yield models was observed. For example, among 
CV models, the direction of correlation of all four crop 
responses with all four climatological variables was positive. 
Figure 5b illustrates the distribution of interannual variability 
of precipitation in Iowa. Visual comparison of maps of yield 
CVs (Fig. 2) with a map of the standard deviation of growing 
season precipitation (Fig. 5b) demonstrates the general spa-
tial relationship where counties of higher interannual yield 
variability are counties with greater interannual variability 
of precipitation. Indeed, the bivariate relationship of all four 
CV responses with all four climatological variables is posi-
tive (data not shown). Simultaneously, counties with higher 
standard deviation of precipitation are counties with lower 
soil organic matter (Fig. 4), lower cation exchange capacity, 
lower permeability and lower plant-available water capac-
ity (data not shown). These fi ndings are interpreted as an 
indication that in locations where interannual variability of 
precipitation is relatively high, soil quality is inadequate to 
compensate (e.g., store moisture), so that in years of low pre-
cipitation, moisture stress leads to reduced yield and there-
fore, increased yield CV.

Applications
The use of a 20-yr data set for an entire state has provided a 
means for identifying subregions of distinctly diff erent char-
acter with potentially important relevance to agriculture, 
particularly crop breeding. A primary strategy for overcom-
ing lower yields of corn in southern Iowa has been an eff ort 

Figure 4. The distributions of mean organic matter and mean depth to seasonally high water table in Iowa. The areas of higher organic 

matter correspond to areas of higher grass crop yields. The areas of greater depth to seasonally high water table correspond to areas 

of higher legume crop yields.
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to increase yield potential, but at the cost of yield constancy 
(Zhisheng Qing, personal communication, 2007). Deploy-
ment of high yield–low constancy varieties in combination 
with relatively high inconstancy of precipitation and lower 
soil quality in southern Iowa may be a major factor in the 
perpetuation of lower yields in the area. Alternatively, breed-
ing to increase yield constancy could improve the likelihood 
of increased mean yields for the area.

The ability to identify distinct subregions within a 
large landscape is potentially important to issues of risk, 
including assessment, management, and mitigation. 
Decision making by individual land managers could be 
improved by understanding the longer-term patterns of 
yield stability of their subregion, potentially resulting in 
reduced losses over time, especially with the availability 
of crop varieties specifi cally suitable for their subregion. 
Likewise, state and federal policy formulation for address-
ing resource limitations could be geographically targeted, 
potentially reducing costs while increasing resource pro-
tection (Akyurek and Okalp, 2006). Lastly, by identifying 
yield subregions, future research eff orts, particularly fi eld-
based experiments for exploring deterministic relation-
ships between yield stability patterns and specifi c drivers, 
can be more effi  ciently planned and implemented. Indeed, 
it is this that the present study aims to inform.

CONCLUSIONS
Use of PLS, while common in chemical science, is rela-
tively rare in the ecological sciences. However, it is gaining 
recognition as a useful tool in ecological analysis because 
of the method’s ability to analyze strongly collinear vari-
ables, as is typical of ecological data. In addition to provid-
ing support for previous studies fi nding that broad-scale 

environmental heterogeneity is a key element in crop yield 
variability beyond the fi eld level, use of PLS in this study, 
in combination with spatial analyses, permitted the iden-
tifi cation of yield-stability regions, as well as diff erences in 
environmental associations among crop functional types. 
However, the full potential of PLS regression in increasing 
knowledge of crop–environment relationships is probably 
not adequately understood. Future research should explore 
the further potentials for application of PLS in agronomic 
and agroecological studies.

Our study demonstrates how relatively inexpensive, 
publically available data can be used to address agroeco-
logical questions and produce important results. As the 
quality and accessibility of such data continue to increase, 
researchers should fi nd increased opportunities for using 
these data in increasingly robust ways. Identifying crop–
environment regions makes it possible to conduct subse-
quent research that incorporates environmental diff erences 
among regions as a fi xed rather than a random eff ect. This 
possibility should greatly encourage researchers using tra-
ditional agronomic (i.e., plot) experiments to more fully 
consider location and distribution of plots in, for example, 
crop breeding and crop introduction studies. Using such 
an approach, future agronomic and agroecological research 
could contribute important information to an expanding 
literature on crop variability beyond the fi eld level.
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Figure 5. The distributions of mean growing season precipitation and the standard deviation of mean growing season precipitation in 

Iowa. (A) Mean growing season precipitation decreases from the southeast to the northwest and is similar to the distribution of mean 

annual precipitation (r = 0.86, p < 0.001). (B) The SD of mean growing season precipitation is an indication of interannual variability of 

growing season precipitation and is similar to the pattern of distribution of the SD of mean annual precipitation (r = 0.81, p < 0.001).
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